Lecture 29: 1st Law of Thermodynamics

Post on 22-Dec-2021

6 views 0 download

Transcript of Lecture 29: 1st Law of Thermodynamics

โ€ข thermodynamic work

โ€ข 1st law of Thermodynamics

โ€ข equation of state of the ideal gas

โ€ข Isochoric, isobaric, and isothermal process in ideal gas

Lecture 29: 1st Law of Thermodynamics

Thermodynamic work

๐‘Š = เถฑ๐‘–

๐‘“

๐‘ ๐‘‰, ๐‘‡ ๐‘‘๐‘‰

work done by the gas

Work and p-V curve

๐‘Š = เถฑ๐‘–

๐‘“

๐‘ ๐‘‰, ๐‘‡ ๐‘‘๐‘‰

๐‘Š > 0 if gas expands (ฮ”๐‘‰ > 0)

๐‘Š < 0 if gas is compressed (ฮ”๐‘‰ < 0)

work done by the gas

โŸน area under the ๐‘ โˆ’ ๐‘‰-curve

First Law of Thermodynamics

The internal energy of a system can change:

โ€ข Heat flow in or out of system

โ€ข Work done on or by gas

ฮ”๐‘ˆ = ๐‘„ โˆ’ ๐‘Š

๐‘„: net heat flowing into the system

๐‘Š: work done by the system

ฮ”๐‘ˆ is completely determined by initial and final

values of the state variables

(even though ๐‘Š and ๐‘„ depend on the process!)

Internal energy

Internal energy ๐‘ˆ of the system

= kinetic energies of particles

+ potential energy of interaction

Value of ๐‘ˆ depends on state of system only.

State is characterized by state variables such as:

temperature, pressure, volume, phase

Ideal gas

โ€ข particles do not interact with each other

โ€ข only elastic collisions between particles and with walls

Real gas can be treated as ideal if:

low density, low pressure, high temperature

State variables are related by:

๐‘๐‘‰ = ๐‘›๐‘…๐‘‡

๐‘› number of moles

๐‘… universal gas constant

๐‘…=8.315J/(molโˆ™ K)

No interactions between particles

โŸน ๐‘ˆ consists only of kinetic energies of particles

โŸน ๐‘ˆ depends only on temperature: ๐‘ˆ = ๐‘ˆ(๐‘‡) * * Only true

for ideal gas!

Important processes for the ideal gas

V

P P P

V Vp=const.isobaric

V=const.isochoric

T=const.isothermal

Adiabatic Process

P

V

๐‘„ = 0๐‘๐‘‰ ๐›พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐›พ = ๐‘๐‘/๐‘๐‘‰

๐›พ = 1.67 ๐‘š๐‘œ๐‘›๐‘œ๐‘Ž๐‘ก๐‘œ๐‘š๐‘–๐‘๐‘œ๐‘Ÿ 1.40 (๐‘‘๐‘–๐‘Ž๐‘ก๐‘œ๐‘š๐‘–๐‘)

๐›พ > 1 steeper than isothermal

Isochoric process for the ideal gas

Isobaric process for the ideal gas

Isothermal process for the ideal gas

Isobaric vs isochoric process

Consider two process between same two temperatures:

Isochoric: ฮ”๐‘ˆ = ๐‘›๐‘๐‘‰ฮ”๐‘‡

Isobaric: ฮ”๐‘ˆ = ๐‘›๐‘๐‘ฮ”๐‘‡ โˆ’ ๐‘ฮ”๐‘‰

๐‘›๐‘๐‘‰ฮ”๐‘‡ = ๐‘›๐‘๐‘ฮ”๐‘‡ โˆ’ ๐‘ฮ”๐‘‰

with ๐‘ฮ”๐‘‰ = ๐‘›๐‘…ฮ”๐‘‡:

๐‘๐‘ โˆ’ ๐‘๐‘‰ = ๐‘…

To increase U by same amount as in isochoric process,

more Q needed for isobaric process because gas is doing work

V

Difference between ๐‘๐‘‰ and ๐‘๐‘

Monoatomic gas: ๐‘๐‘‰ =3

2๐‘…, ๐‘๐‘ =

5

2๐‘…

Diatomic gas: ๐‘๐‘‰ =5

2๐‘…, ๐‘๐‘ =

7

2๐‘…

๐‘๐‘ โˆ’ ๐‘๐‘‰ = ๐‘…

Mono- vs diatomic gas

Monoatomic gas: ๐‘๐‘‰ =3

2๐‘…, ๐‘๐‘ =

5

2๐‘…

Diatomic gas: ๐‘๐‘‰ =5

2๐‘…, ๐‘๐‘ =

7

2๐‘…

Each degree of freedom in the kinetic energy

contributes 1

2๐‘… to specific heat

Monoatomic gas: 3 directions for translation

Diatomic gas: 3 translations, 3 rotations,

but very small moment of inertia about one axis,

this rotation does not contribute

Adiabatic Process

P

V

๐‘„ = 0 โ†’ ฮ”๐‘ˆ = โˆ’๐‘Š