Kenny De Commer - group30.ugent.be · Approximation properties for quantum groups Kenny De Commer...

Post on 12-Mar-2020

3 views 0 download

Transcript of Kenny De Commer - group30.ugent.be · Approximation properties for quantum groups Kenny De Commer...

Approximation properties for quantum groups

Kenny De Commer(joint work with A. Freslon and M. Yamashita)

Free University Brussels

15 July 2014

Kenny De Commer (VUB) Approximation properties 15 July 2014 1 / 14

Approximation properties

Fourier series

Let f ∈ C (S1).

fN(θ) =N∑−N

fn e inθ → f (θ) uniformly?

NO!

f(C)N (θ) = 1

N

N−1∑n=0

fn(θ)→ f (θ) uniformly? Yes!

Note:

f(C)N (θ) = (gN ∗ f )(θ), gN(θ) =

1

(sin(N2 θ)

sin( 12θ)

)2

=N∑

n=−N(1− |n|

N) fn e

inθ

Kenny De Commer (VUB) Approximation properties 15 July 2014 2 / 14

Approximation properties

Fourier series

Let f ∈ C (S1).

fN(θ) =N∑−N

fn e inθ → f (θ) uniformly? NO!

f(C)N (θ) = 1

N

N−1∑n=0

fn(θ)→ f (θ) uniformly? Yes!

Note:

f(C)N (θ) = (gN ∗ f )(θ), gN(θ) =

1

(sin(N2 θ)

sin( 12θ)

)2

=N∑

n=−N(1− |n|

N) fn e

inθ

Kenny De Commer (VUB) Approximation properties 15 July 2014 2 / 14

Approximation properties

Fourier series

Let f ∈ C (S1).

fN(θ) =N∑−N

fn e inθ → f (θ) uniformly? NO!

f(C)N (θ) = 1

N

N−1∑n=0

fn(θ)→ f (θ) uniformly? Yes!

Note:

f(C)N (θ) = (gN ∗ f )(θ), gN(θ) =

1

(sin(N2 θ)

sin( 12θ)

)2

=N∑

n=−N(1− |n|

N) fn e

inθ

Kenny De Commer (VUB) Approximation properties 15 July 2014 2 / 14

Approximation properties

Fourier series

Let f ∈ C (S1).

fN(θ) =N∑−N

fn e inθ → f (θ) uniformly? NO!

f(C)N (θ) = 1

N

N−1∑n=0

fn(θ)→ f (θ) uniformly? Yes!

Note:

f(C)N (θ) = (gN ∗ f )(θ), gN(θ) =

1

(sin(N2 θ)

sin( 12θ)

)2

=N∑

n=−N(1− |n|

N) fn e

inθ

Kenny De Commer (VUB) Approximation properties 15 July 2014 2 / 14

Approximation properties

Fourier series

Let f ∈ C (S1).

fN(θ) =N∑−N

fn e inθ → f (θ) uniformly? NO!

f(C)N (θ) = 1

N

N−1∑n=0

fn(θ)→ f (θ) uniformly? Yes!

Note:

f(C)N (θ) = (gN ∗ f )(θ), gN(θ) =

1

(sin(N2 θ)

sin( 12θ)

)2

=N∑

n=−N(1− |n|

N) fn e

inθ

Kenny De Commer (VUB) Approximation properties 15 July 2014 2 / 14

Approximation properties

Approximation properties

A ⊆ B(H) a C∗-algebra.

T : A→ A ⇒ T (n) : Mn(A)→Mn(A)

• T cp (completely positive) ⇐⇒ all T (n) positive.

• T cb (completely bounded) ⇐⇒ ‖T‖cb = lim supn ‖T (n)‖ bounded.

Net θα : A→ A & ∀a ∈ A : θα(a)→ a

• A has CPAP ⇐⇒ all θα ∈ CP fr(A).

• A has ACPAP ⇐⇒ all θα ∈ CP(A) ∩ CCfr(A).

• A has CCAP ⇐⇒ all θα ∈ CCfr(A).

• A has CBAP ⇐⇒ all θα ∈ CB≤C ,fr(A), some C ≥ 1.

Kenny De Commer (VUB) Approximation properties 15 July 2014 3 / 14

Approximation properties

Approximation properties

A ⊆ B(H) a C∗-algebra.

T : A→ A ⇒ T (n) : Mn(A)→Mn(A)

• T cp (completely positive) ⇐⇒ all T (n) positive.

• T cb (completely bounded) ⇐⇒ ‖T‖cb = lim supn ‖T (n)‖ bounded.

Net θα : A→ A & ∀a ∈ A : θα(a)→ a

• A has CPAP ⇐⇒ all θα ∈ CP fr(A).

• A has ACPAP ⇐⇒ all θα ∈ CP(A) ∩ CCfr(A).

• A has CCAP ⇐⇒ all θα ∈ CCfr(A).

• A has CBAP ⇐⇒ all θα ∈ CB≤C ,fr(A), some C ≥ 1.

Kenny De Commer (VUB) Approximation properties 15 July 2014 3 / 14

Approximation properties

Approximation properties

A ⊆ B(H) a C∗-algebra.

T : A→ A ⇒ T (n) : Mn(A)→Mn(A)

• T cp (completely positive) ⇐⇒ all T (n) positive.

• T cb (completely bounded) ⇐⇒ ‖T‖cb = lim supn ‖T (n)‖ bounded.

Net θα : A→ A & ∀a ∈ A : θα(a)→ a

• A has CPAP ⇐⇒ all θα ∈ CP fr(A).

• A has ACPAP ⇐⇒ all θα ∈ CP(A) ∩ CCfr(A).

• A has CCAP ⇐⇒ all θα ∈ CCfr(A).

• A has CBAP ⇐⇒ all θα ∈ CB≤C ,fr(A), some C ≥ 1.

Kenny De Commer (VUB) Approximation properties 15 July 2014 3 / 14

Approximation properties

Holomorphicity trick

(0, 1) ⊆ S ⊆ C

Lemma

Assume there exists holomorphic θ : S→ CB(A) such that

θt is cp for 0 < t < 1 and θt → id pointwise for t → 1.

For |z | < ε small, θz =∑

n θz,n in cb-norm with θz,n finite rankcb-map.

Then A has ACPAP.

Proof.

Consider S→ CB(A)/CBfr(A).

Remark

If

θ =∑

n θn pointwise on dense subspace and∑n ‖θn‖cb <∞

then θ =∑

n θn in cb-norm.

Kenny De Commer (VUB) Approximation properties 15 July 2014 4 / 14

Approximation properties

Holomorphicity trick

(0, 1) ⊆ S ⊆ C

Lemma

Assume there exists holomorphic θ : S→ CB(A) such that

θt is cp for 0 < t < 1 and θt → id pointwise for t → 1.

For |z | < ε small, θz =∑

n θz,n in cb-norm with θz,n finite rankcb-map.

Then A has ACPAP.

Proof.

Consider S→ CB(A)/CBfr(A).

Remark

If

θ =∑

n θn pointwise on dense subspace and∑n ‖θn‖cb <∞

then θ =∑

n θn in cb-norm.

Kenny De Commer (VUB) Approximation properties 15 July 2014 4 / 14

Approximation properties

Holomorphicity trick

(0, 1) ⊆ S ⊆ C

Lemma

Assume there exists holomorphic θ : S→ CB(A) such that

θt is cp for 0 < t < 1 and θt → id pointwise for t → 1.

For |z | < ε small, θz =∑

n θz,n in cb-norm with θz,n finite rankcb-map.

Then A has ACPAP.

Proof.

Consider S→ CB(A)/CBfr(A).

Remark

If

θ =∑

n θn pointwise on dense subspace and∑n ‖θn‖cb <∞

then θ =∑

n θn in cb-norm.

Kenny De Commer (VUB) Approximation properties 15 July 2014 4 / 14

Compact quantum groups

Compact quantum groups

Definition (Compact quantum group)

C (G) unital C∗-algebra, ∆ : C (G)→ C (G) ⊗min

C (G) coassociative and

∆(C (G))(C (G)⊗ 1) = ∆(C (G))(1⊗ C (G)) = C (G) ⊗min

C (G).

Example

C (G ), G compact group, ∆(f )(x , y) = f (xy)

C ∗u (Γ) and C ∗r (Γ), Γ discrete group, ∆(λg ) = λg ⊗ λg .

Remark

Change of viewpoint: C (G) = C ∗(Γ), with Γ = G discrete quantum group.

Kenny De Commer (VUB) Approximation properties 15 July 2014 5 / 14

Compact quantum groups

Compact quantum groups

Definition (Compact quantum group)

C (G) unital C∗-algebra, ∆ : C (G)→ C (G) ⊗min

C (G) coassociative and

∆(C (G))(C (G)⊗ 1) = ∆(C (G))(1⊗ C (G)) = C (G) ⊗min

C (G).

Example

C (G ), G compact group, ∆(f )(x , y) = f (xy)

C ∗u (Γ) and C ∗r (Γ), Γ discrete group, ∆(λg ) = λg ⊗ λg .

Remark

Change of viewpoint: C (G) = C ∗(Γ), with Γ = G discrete quantum group.

Kenny De Commer (VUB) Approximation properties 15 July 2014 5 / 14

Compact quantum groups

Structure theory

P(G) ⊆ C (G) dense,

P(G) = C1⊕

Cuπ11 Cuπ12 . . . Cuπ1nCuπ21 Cuπ22 . . . Cuπ2n

......

. . ....

Cuπn1 Cuπn2 . . . Cuπnn

⊕ . . .

⇒ Haar state ϕ : C (G)→ C from P(G)→ C1.

⇒ Reduced C∗-algebra Cr (G) ⊆ B(L2(G)).

⇒ Universal C∗-algebra Cu(G).

Kenny De Commer (VUB) Approximation properties 15 July 2014 6 / 14

Compact quantum groups

Structure theory

P(G) ⊆ C (G) dense,

P(G) = C1⊕

Cuπ11 Cuπ12 . . . Cuπ1nCuπ21 Cuπ22 . . . Cuπ2n

......

. . ....

Cuπn1 Cuπn2 . . . Cuπnn

⊕ . . .

⇒ Haar state ϕ : C (G)→ C from P(G)→ C1.

⇒ Reduced C∗-algebra Cr (G) ⊆ B(L2(G)).

⇒ Universal C∗-algebra Cu(G).

Kenny De Commer (VUB) Approximation properties 15 July 2014 6 / 14

Compact quantum groups

Structure theory

P(G) ⊆ C (G) dense,

P(G) = C1⊕

Cuπ11 Cuπ12 . . . Cuπ1nCuπ21 Cuπ22 . . . Cuπ2n

......

. . ....

Cuπn1 Cuπn2 . . . Cuπnn

⊕ . . .

⇒ Haar state ϕ : C (G)→ C from P(G)→ C1.

⇒ Reduced C∗-algebra Cr (G) ⊆ B(L2(G)).

⇒ Universal C∗-algebra Cu(G).

Kenny De Commer (VUB) Approximation properties 15 July 2014 6 / 14

Compact quantum groups

Structure theory

P(G) ⊆ C (G) dense,

P(G) = C1⊕

Cuπ11 Cuπ12 . . . Cuπ1nCuπ21 Cuπ22 . . . Cuπ2n

......

. . ....

Cuπn1 Cuπn2 . . . Cuπnn

⊕ . . .

⇒ Haar state ϕ : C (G)→ C from P(G)→ C1.

⇒ Reduced C∗-algebra Cr (G) ⊆ B(L2(G)).

⇒ Universal C∗-algebra Cu(G).

Kenny De Commer (VUB) Approximation properties 15 July 2014 6 / 14

Compact quantum groups

Universal compact quantum groups

Example (Universal unitary and orthogonal quantum groups)

F ∈ Mn(C) invertible, U = (uij) indeterminates.

Cu(U+(F )) = C ∗u (FUF ) =< uij | U,FUF−1 unitary > .

Cu(O+(F )) = C ∗u (FOF ) =< uij | U = FUF−1 unitary > .

Remark

Cu(U+(In))/ < [uij , ukl ] >= C (Un)

Cu(O+(In))/ < [uij , ukl ] >= C (On)

C ∗u (FUIn)/ < uij − uji >= C ∗u (Fn)

Kenny De Commer (VUB) Approximation properties 15 July 2014 7 / 14

Compact quantum groups

Universal compact quantum groups

Example (Universal unitary and orthogonal quantum groups)

F ∈ Mn(C) invertible, U = (uij) indeterminates.

Cu(U+(F )) = C ∗u (FUF ) =< uij | U,FUF−1 unitary > .

Cu(O+(F )) = C ∗u (FOF ) =< uij | U = FUF−1 unitary > .

Remark

Cu(U+(In))/ < [uij , ukl ] >= C (Un)

Cu(O+(In))/ < [uij , ukl ] >= C (On)

C ∗u (FUIn)/ < uij − uji >= C ∗u (Fn)

Kenny De Commer (VUB) Approximation properties 15 July 2014 7 / 14

Compact quantum groups

Main theorem

Theorem (DC-Freslon-Yamashita, ‘13)

Let F ∈ Mn(C) invertible.

Then Cr (O+(F )) and Cr (U+(F )) have the ACPAP.

Remark

Earlier partial results for F = In by M. Brannan and A. Freslon.

Kenny De Commer (VUB) Approximation properties 15 July 2014 8 / 14

Compact quantum groups

Main theorem

Theorem (DC-Freslon-Yamashita, ‘13)

Let F ∈ Mn(C) invertible.

Then Cr (O+(F )) and Cr (U+(F )) have the ACPAP.

Remark

Earlier partial results for F = In by M. Brannan and A. Freslon.

Kenny De Commer (VUB) Approximation properties 15 July 2014 8 / 14

On the proof

More on universal orthogonal quantum groups

Definition (Woronowicz)

Let 0 < |q| ≤ 1.

C (SUq(2)) =< α, β |{αβ = qβα, β∗β = ββ∗, α∗β = q−1βα∗

α∗α + β∗β = 1, αα∗ + q2ββ∗ = 1>

⇒ C (SUq(2)) = Cr=u(O+(F )) for F =

(0 −sgn(q)|q|1/2

|q|−1/2 0

).

Remark

Assume F F = ±1.

Fus(O+F ) = Fus(SU(2)).

Rep(O+F ) = Rep(SU∓q(2)) for q + q−1 = Tr(F ∗F )

Kenny De Commer (VUB) Approximation properties 15 July 2014 9 / 14

On the proof

More on universal orthogonal quantum groups

Definition (Woronowicz)

Let 0 < |q| ≤ 1.

C (SUq(2)) =< α, β |{αβ = qβα, β∗β = ββ∗, α∗β = q−1βα∗

α∗α + β∗β = 1, αα∗ + q2ββ∗ = 1>

⇒ C (SUq(2)) = Cr=u(O+(F )) for F =

(0 −sgn(q)|q|1/2

|q|−1/2 0

).

Remark

Assume F F = ±1.

Fus(O+F ) = Fus(SU(2)).

Rep(O+F ) = Rep(SU∓q(2)) for q + q−1 = Tr(F ∗F )

Kenny De Commer (VUB) Approximation properties 15 July 2014 9 / 14

On the proof

Multipliers

Definition

θ : C (G)→ C (G) is central multiplier if

θ(uπij ) = θπuπij , θπ ∈ C.

Lemma

By ω → θω = (id⊗ ω)∆, there is a one-to-one correspondence between

Central positive functionals ω on Cu(G), i.e. ω(uπij ) = θπδij .

Completely positive central multipliers on Cr (G).

Remark

If ω ∈ Cu(G)∗, then θω is cb.

Kenny De Commer (VUB) Approximation properties 15 July 2014 10 / 14

On the proof

Multipliers

Definition

θ : C (G)→ C (G) is central multiplier if

θ(uπij ) = θπuπij , θπ ∈ C.

Lemma

By ω → θω = (id⊗ ω)∆, there is a one-to-one correspondence between

Central positive functionals ω on Cu(G), i.e. ω(uπij ) = θπδij .

Completely positive central multipliers on Cr (G).

Remark

If ω ∈ Cu(G)∗, then θω is cb.

Kenny De Commer (VUB) Approximation properties 15 July 2014 10 / 14

On the proof

Multipliers

Definition

θ : C (G)→ C (G) is central multiplier if

θ(uπij ) = θπuπij , θπ ∈ C.

Lemma

By ω → θω = (id⊗ ω)∆, there is a one-to-one correspondence between

Central positive functionals ω on Cu(G), i.e. ω(uπij ) = θπδij .

Completely positive central multipliers on Cr (G).

Remark

If ω ∈ Cu(G)∗, then θω is cb.

Kenny De Commer (VUB) Approximation properties 15 July 2014 10 / 14

On the proof

Method of proof

1 Prove ACPAP for C (SUq(2)) with 0 < |q| < 1 by means of

θα completely positive central multipliersholomorphicity trick

2 Extend to Cr (O+(F )) with F F = ±1 by monoidal equivalence.

3 Extend to arbitrary Cr (O+(F )) and Cr (U+(F )) by free producttechniques.

Kenny De Commer (VUB) Approximation properties 15 July 2014 11 / 14

On the proof

Explicit form

Take µn the nth dilated Chebyshev polynomial,

µn ∈ C[z ], µ0(z) = 1, zµn(z) = µn+1(z) + µn−1(z),

so

µn(x + x−1) =x−(n+1) − xn+1

x−1 − x.

Define

ωz(u(n/2)ij ) = ωn,zδij =

µn(|q|z + |q|−z)

µn(|q|+ |q|−1)δij .

Thenθz =

∑n

ω3n,zp(n/2)

satisfies conditions for holomorphicity trick.

Kenny De Commer (VUB) Approximation properties 15 July 2014 12 / 14

On the proof

Details I

θ : S→ CB(SUq(2)) and holomorphic?

X

Representation ρ : C (SUq(2))→ B(l2(N)) and

ωz(x) =〈ηz , ρ(x)ηz〉〈ηz , ηz〉

withS 3 z → ηz ∈ l2(N) holomorphic

Remark

Central states on Cu(G) ⇔ special states on C ∗u (DG).

Drinfeld double DSUq(2) = SLq(2,C).

Complementary series representations for SLq(2,C) with cyclic vector.

Kenny De Commer (VUB) Approximation properties 15 July 2014 13 / 14

On the proof

Details I

θ : S→ CB(SUq(2)) and holomorphic? X

Representation ρ : C (SUq(2))→ B(l2(N)) and

ωz(x) =〈ηz , ρ(x)ηz〉〈ηz , ηz〉

withS 3 z → ηz ∈ l2(N) holomorphic

Remark

Central states on Cu(G) ⇔ special states on C ∗u (DG).

Drinfeld double DSUq(2) = SLq(2,C).

Complementary series representations for SLq(2,C) with cyclic vector.

Kenny De Commer (VUB) Approximation properties 15 July 2014 13 / 14

On the proof

Details I

θ : S→ CB(SUq(2)) and holomorphic? X

Representation ρ : C (SUq(2))→ B(l2(N)) and

ωz(x) =〈ηz , ρ(x)ηz〉〈ηz , ηz〉

withS 3 z → ηz ∈ l2(N) holomorphic

Remark

Central states on Cu(G) ⇔ special states on C ∗u (DG).

Drinfeld double DSUq(2) = SLq(2,C).

Complementary series representations for SLq(2,C) with cyclic vector.

Kenny De Commer (VUB) Approximation properties 15 July 2014 13 / 14

On the proof

Details II

θt is cp for 0 < t < 1? X

θt → id pointwise on P(SUq(2)) for t → 1? X∑n ‖θz,n‖cb <∞ for |z | < ε small?

X

‖p(n/2)‖cb = O(|q|−2n),

|ωn,z |3 = O(|q|3n(1−<(z))).

Kenny De Commer (VUB) Approximation properties 15 July 2014 14 / 14

On the proof

Details II

θt is cp for 0 < t < 1? X

θt → id pointwise on P(SUq(2)) for t → 1? X

∑n ‖θz,n‖cb <∞ for |z | < ε small?

X

‖p(n/2)‖cb = O(|q|−2n),

|ωn,z |3 = O(|q|3n(1−<(z))).

Kenny De Commer (VUB) Approximation properties 15 July 2014 14 / 14

On the proof

Details II

θt is cp for 0 < t < 1? X

θt → id pointwise on P(SUq(2)) for t → 1? X∑n ‖θz,n‖cb <∞ for |z | < ε small?

X

‖p(n/2)‖cb = O(|q|−2n),

|ωn,z |3 = O(|q|3n(1−<(z))).

Kenny De Commer (VUB) Approximation properties 15 July 2014 14 / 14

On the proof

Details II

θt is cp for 0 < t < 1? X

θt → id pointwise on P(SUq(2)) for t → 1? X∑n ‖θz,n‖cb <∞ for |z | < ε small? X

‖p(n/2)‖cb = O(|q|−2n),

|ωn,z |3 = O(|q|3n(1−<(z))).

Kenny De Commer (VUB) Approximation properties 15 July 2014 14 / 14