Investigating Dark Energy and Gravitation at...

Post on 29-May-2018

226 views 2 download

Transcript of Investigating Dark Energy and Gravitation at...

Investigating Dark Energy and Gravitation at

cosmological scales with EUCLID

Alain Blanchard

LaThuile, March 26th, 2015

Alain Blanchard Investigating dark gravity with EUCLID

Λ CDM modelremarkable success

Successes of Λ CDM model

Alain Blanchard Investigating dark gravity with EUCLID

Λ CDM modelremarkable success

Successes of Λ CDM model

SnIa

Alain Blanchard Investigating dark gravity with EUCLID

Λ CDM modelremarkable success

Successes of Λ CDM model

SnIa

BAO

Alain Blanchard Investigating dark gravity with EUCLID

Λ CDM modelremarkable success

Successes of Λ CDM model

SnIa

BAO

CMB

Alain Blanchard Investigating dark gravity with EUCLID

Precision cosmology area

Alain Blanchard Investigating dark gravity with EUCLID

Precision cosmology area

Alain Blanchard Investigating dark gravity with EUCLID

Precision cosmology area

Alain Blanchard Investigating dark gravity with EUCLID

Precision cosmology area

Alain Blanchard Investigating dark gravity with EUCLID

Tightening down Dark Energy properties

Tools

Alain Blanchard Investigating dark gravity with EUCLID

Tightening down Dark Energy properties

Tools

Laboratory experiments.

Alain Blanchard Investigating dark gravity with EUCLID

Tightening down Dark Energy properties

Tools

Laboratory experiments. limited

Alain Blanchard Investigating dark gravity with EUCLID

Tightening down Dark Energy properties

Tools

Laboratory experiments. limited

Solar system test.

Alain Blanchard Investigating dark gravity with EUCLID

Tightening down Dark Energy properties

Tools

Laboratory experiments. limited

Solar system test. ...

Alain Blanchard Investigating dark gravity with EUCLID

Tightening down Dark Energy properties

Tools

Laboratory experiments. limited

Solar system test. ...

Galactic level.

Alain Blanchard Investigating dark gravity with EUCLID

Tightening down Dark Energy properties

Tools

Laboratory experiments. limited

Solar system test. ...

Galactic level. NL ...

Alain Blanchard Investigating dark gravity with EUCLID

Tightening down Dark Energy properties

Tools

Laboratory experiments. limited

Solar system test. ...

Galactic level. NL ...

Cosmological scales:

Alain Blanchard Investigating dark gravity with EUCLID

Tightening down Dark Energy properties

Tools

Laboratory experiments. limited

Solar system test. ...

Galactic level. NL ...

Cosmological scales:Let’s go for it!

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: bureaucracy...

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Secondary probes

Clusters.

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Secondary probes

Clusters.

CBM/X cross correlations.

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Secondary probes

Clusters.

CBM/X cross correlations.

Strong lensing.

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Secondary probes

Clusters.

CBM/X cross correlations.

Strong lensing.

Legacy Science

Primeval Universe.

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Secondary probes

Clusters.

CBM/X cross correlations.

Strong lensing.

Legacy Science

Primeval Universe.

Galaxy/AGN evolution.

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Secondary probes

Clusters.

CBM/X cross correlations.

Strong lensing.

Legacy Science

Primeval Universe.

Galaxy/AGN evolution.

Local Universe

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Secondary probes

Clusters.

CBM/X cross correlations.

Strong lensing.

Legacy Science

Primeval Universe.

Galaxy/AGN evolution.

Local Universe

Milky Way,

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Secondary probes

Clusters.

CBM/X cross correlations.

Strong lensing.

Legacy Science

Primeval Universe.

Galaxy/AGN evolution.

Local Universe

Milky Way, Exo-Planets,

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID

Goals

Provide astrophysical data (z ≤∼ 2) for investigating Dark Energy:

Weak lensing.

Galaxy clustering & Redshift distorsion.

Secondary probes

Clusters.

CBM/X cross correlations.

Strong lensing.

Legacy Science

Primeval Universe.

Galaxy/AGN evolution.

Local Universe

Milky Way, Exo-Planets, SNe & Transients

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Strong lensing (M.Meneghetti, J.-P. Kneib, R. Gavazzi).

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Strong lensing (M.Meneghetti, J.-P. Kneib, R. Gavazzi).

Theory (L.Amendola, M.Kunz, M.Viel).

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Strong lensing (M.Meneghetti, J.-P. Kneib, R. Gavazzi).

Theory (L.Amendola, M.Kunz, M.Viel).

Cosmological simulations (P.Fosalba, R.Teyssier).

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Strong lensing (M.Meneghetti, J.-P. Kneib, R. Gavazzi).

Theory (L.Amendola, M.Kunz, M.Viel).

Cosmological simulations (P.Fosalba, R.Teyssier).

Primeval Universe (J.-G. Cuby, J Fynbo).

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Strong lensing (M.Meneghetti, J.-P. Kneib, R. Gavazzi).

Theory (L.Amendola, M.Kunz, M.Viel).

Cosmological simulations (P.Fosalba, R.Teyssier).

Primeval Universe (J.-G. Cuby, J Fynbo).

Galaxy/AGN evolution (J.Brichmann, D.Elbaz, A.Cimati).

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Strong lensing (M.Meneghetti, J.-P. Kneib, R. Gavazzi).

Theory (L.Amendola, M.Kunz, M.Viel).

Cosmological simulations (P.Fosalba, R.Teyssier).

Primeval Universe (J.-G. Cuby, J Fynbo).

Galaxy/AGN evolution (J.Brichmann, D.Elbaz, A.Cimati).

Local Universe (B.Poggianti, C. Conselice)

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Strong lensing (M.Meneghetti, J.-P. Kneib, R. Gavazzi).

Theory (L.Amendola, M.Kunz, M.Viel).

Cosmological simulations (P.Fosalba, R.Teyssier).

Primeval Universe (J.-G. Cuby, J Fynbo).

Galaxy/AGN evolution (J.Brichmann, D.Elbaz, A.Cimati).

Local Universe (B.Poggianti, C. Conselice)

Milky Way (E.Tolstoy, A. Ferguson)

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Strong lensing (M.Meneghetti, J.-P. Kneib, R. Gavazzi).

Theory (L.Amendola, M.Kunz, M.Viel).

Cosmological simulations (P.Fosalba, R.Teyssier).

Primeval Universe (J.-G. Cuby, J Fynbo).

Galaxy/AGN evolution (J.Brichmann, D.Elbaz, A.Cimati).

Local Universe (B.Poggianti, C. Conselice)

Milky Way (E.Tolstoy, A. Ferguson)

Exo-Planets (J.-P. Beaulieu, M. Zapatero-Osorio, E.Kerins)

Alain Blanchard Investigating dark gravity with EUCLID

Basics of EUCLID: Science Working Groups (SWG)

Weak lensing (H.Hoekstra, T.Kitching, K.Benabed).

Galaxy clustering (L.Guzzo, W.Percival, Y.Wang).

Clusters (L.Moscardini, J.Weller, J.Bartlett).

CBM/X cross correlations (N.Ahanim, C.Baccigaluppi.

Strong lensing (M.Meneghetti, J.-P. Kneib, R. Gavazzi).

Theory (L.Amendola, M.Kunz, M.Viel).

Cosmological simulations (P.Fosalba, R.Teyssier).

Primeval Universe (J.-G. Cuby, J Fynbo).

Galaxy/AGN evolution (J.Brichmann, D.Elbaz, A.Cimati).

Local Universe (B.Poggianti, C. Conselice)

Milky Way (E.Tolstoy, A. Ferguson)

Exo-Planets (J.-P. Beaulieu, M. Zapatero-Osorio, E.Kerins)

SNe & Transients (I.Hook, C.Tao, E.Cappellaro).

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

SNIa, CMB, tranversal BAO

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

SNIa, CMB, tranversal BAO

H(z)

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

SNIa, CMB, tranversal BAO

H(z)longitudinal BAO, z , t(z)

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

SNIa, CMB, tranversal BAO

H(z)longitudinal BAO, z , t(z)

Testing cosmology at the (linear) perturbation level

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

SNIa, CMB, tranversal BAO

H(z)longitudinal BAO, z , t(z)

Testing cosmology at the (linear) perturbation level

G (z)δ(z) = G (z)δ0 growth factor

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

SNIa, CMB, tranversal BAO

H(z)longitudinal BAO, z , t(z)

Testing cosmology at the (linear) perturbation level

G (z)δ(z) = G (z)δ0 growth factordln(G)dln(a) ∼ Ωγ

m(a)

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

SNIa, CMB, tranversal BAO

H(z)longitudinal BAO, z , t(z)

Testing cosmology at the (linear) perturbation level

G (z)δ(z) = G (z)δ0 growth factordln(G)dln(a) ∼ Ωγ

m(a)

γ is the growth index (γ ∼ 0.55 in ΛCDM)

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

SNIa, CMB, tranversal BAO

H(z)longitudinal BAO, z , t(z)

Testing cosmology at the (linear) perturbation level

G (z)δ(z) = G (z)δ0 growth factordln(G)dln(a) ∼ Ωγ

m(a)

γ is the growth index (γ ∼ 0.55 in ΛCDM)Weak Lensing,

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Testing cosmology at the background level

D(z) =1.

H0Ω1/2K

SK

(

H0Ω1/2K

∫ z

0

dz

H(z)

)

SNIa, CMB, tranversal BAO

H(z)longitudinal BAO, z , t(z)

Testing cosmology at the (linear) perturbation level

G (z)δ(z) = G (z)δ0 growth factordln(G)dln(a) ∼ Ωγ

m(a)

γ is the growth index (γ ∼ 0.55 in ΛCDM)Weak Lensing, RSD, Clusters

Alain Blanchard Investigating dark gravity with EUCLID

Fiducial model of dark energy

Quintessence : scalar field with minimal couplings and canonicalkinetic energy.

Alain Blanchard Investigating dark gravity with EUCLID

Fiducial model of dark energy

Quintessence : scalar field with minimal couplings and canonicalkinetic energy.

S =

d4x√

g

[

R

16πG− 1

2gµνgµν∂µφ∂νφ− V (φ) + Lm

]

Alain Blanchard Investigating dark gravity with EUCLID

Fiducial model of dark energy

Quintessence : scalar field with minimal couplings and canonicalkinetic energy.

S =

d4x√

g

[

R

16πG− 1

2gµνgµν∂µφ∂νφ− V (φ) + Lm

]

Equation of state parameter:

w =P

ρ=

1/2φ2 − V (φ)

1/2φ2 + V (φ)

Alain Blanchard Investigating dark gravity with EUCLID

Fiducial model of dark energy

Quintessence : scalar field with minimal couplings and canonicalkinetic energy.

S =

d4x√

g

[

R

16πG− 1

2gµνgµν∂µφ∂νφ− V (φ) + Lm

]

Equation of state parameter:

w =P

ρ=

1/2φ2 − V (φ)

1/2φ2 + V (φ)

CPL parametrization: w(z) = wp + (1 − a)wa

Alain Blanchard Investigating dark gravity with EUCLID

Fiducial model of dark energy

Quintessence : scalar field with minimal couplings and canonicalkinetic energy.

S =

d4x√

g

[

R

16πG− 1

2gµνgµν∂µφ∂νφ− V (φ) + Lm

]

Equation of state parameter:

w =P

ρ=

1/2φ2 − V (φ)

1/2φ2 + V (φ)

CPL parametrization: w(z) = wp + (1 − a)wa

growth index:

γ = 0.55 + 0.05[1 + w(z = 1)](fitted)

Alain Blanchard Investigating dark gravity with EUCLID

Fiducial model of dark energy

Quintessence : scalar field with minimal couplings and canonicalkinetic energy.

S =

d4x√

g

[

R

16πG− 1

2gµνgµν∂µφ∂νφ− V (φ) + Lm

]

Equation of state parameter:

w =P

ρ=

1/2φ2 − V (φ)

1/2φ2 + V (φ)

CPL parametrization: w(z) = wp + (1 − a)wa

growth index:

γ = 0.55 + 0.05[1 + w(z = 1)](fitted)

Quintessence has γ ∼ 0.55 “ standard dark energy model”

Alain Blanchard Investigating dark gravity with EUCLID

Astrophysical point of view

Alain Blanchard Investigating dark gravity with EUCLID

Where we go:

Alain Blanchard Investigating dark gravity with EUCLID

Where we go:

Alain Blanchard Investigating dark gravity with EUCLID

Where we go:

R ∝ −(ρ+ 3P)R

Alain Blanchard Investigating dark gravity with EUCLID

The Curvature–Newtonian Potential diagram.

Psaltis 2008.

Alain Blanchard Investigating dark gravity with EUCLID

Further reading

Euclid Definition Study Report mission

R. Laureijs et al., Euclid red book : arXiv:1110.3193

Alain Blanchard Investigating dark gravity with EUCLID

Further reading

Euclid Definition Study Report mission

R. Laureijs et al., Euclid red book : arXiv:1110.3193

Cosmology and fundamental physics with the Euclid satellite.

L. Amendola et al., Living Reviews in Relativity 16, 6 (2013).

Alain Blanchard Investigating dark gravity with EUCLID

Perturbation dynamics

Scalar Perturbations (Newtonnian gauge)

ds2 = a2(t)[−(1 + 2Ψ)dt2 + (1 − 2Φ)dx idxi ]

Alain Blanchard Investigating dark gravity with EUCLID

Perturbation dynamics

Scalar Perturbations (Newtonnian gauge)

ds2 = a2(t)[−(1 + 2Ψ)dt2 + (1 − 2Φ)dx idxi ]

Sub-horizon dynamics

−k2Φ = 4πGQ(a, k)a2ρm∆m

Alain Blanchard Investigating dark gravity with EUCLID

Perturbation dynamics

Scalar Perturbations (Newtonnian gauge)

ds2 = a2(t)[−(1 + 2Ψ)dt2 + (1 − 2Φ)dx idxi ]

Sub-horizon dynamics

−k2Φ = 4πGQ(a, k)a2ρm∆m

Ψ− Φ relation:Φ = η(a, k)Ψ

Alain Blanchard Investigating dark gravity with EUCLID

Perturbation dynamics

Scalar Perturbations (Newtonnian gauge)

ds2 = a2(t)[−(1 + 2Ψ)dt2 + (1 − 2Φ)dx idxi ]

Sub-horizon dynamics

−k2Φ = 4πGQ(a, k)a2ρm∆m

Ψ− Φ relation:Φ = η(a, k)Ψ

For a given DE/MG theory, Q, η can be computed and equationsfor perturbations can be solved.

Alain Blanchard Investigating dark gravity with EUCLID

From redshift survey

Alain Blanchard Investigating dark gravity with EUCLID

From redshift survey

Pg (k)

Alain Blanchard Investigating dark gravity with EUCLID

From redshift survey

Pg (k) then to PDM(k)

Alain Blanchard Investigating dark gravity with EUCLID

From redshift survey

Alain Blanchard Investigating dark gravity with EUCLID

From redshift survey

Access to ΦAlain Blanchard Investigating dark gravity with EUCLID

From weak lensing

Alain Blanchard Investigating dark gravity with EUCLID

From weak lensing

Dark matter tomography

Alain Blanchard Investigating dark gravity with EUCLID

From weak lensing

Alain Blanchard Investigating dark gravity with EUCLID

From weak lensing

Access to ψ +Φ

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Beyond standard DE model

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Beyond standard DE model: differences between DE and MG is lessclear: a modification to Einstein’s equation can be interpreted asstandard Einstein gravity with a modified “matter” source (⊃scalars, vectors and tensors).

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Beyond standard DE model: differences between DE and MG is lessclear: a modification to Einstein’s equation can be interpreted asstandard Einstein gravity with a modified “matter” source (⊃scalars, vectors and tensors).

Terminology :

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Beyond standard DE model: differences between DE and MG is lessclear: a modification to Einstein’s equation can be interpreted asstandard Einstein gravity with a modified “matter” source (⊃scalars, vectors and tensors).

Terminology :

Standard dark energy: standard gravity, canonical kineticenergy, minimal couplings, sound speed = c.

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Beyond standard DE model: differences between DE and MG is lessclear: a modification to Einstein’s equation can be interpreted asstandard Einstein gravity with a modified “matter” source (⊃scalars, vectors and tensors).

Terminology :

Standard dark energy: standard gravity, canonical kineticenergy, minimal couplings, sound speed = c.

Clustering dark energy: k-essence

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Beyond standard DE model: differences between DE and MG is lessclear: a modification to Einstein’s equation can be interpreted asstandard Einstein gravity with a modified “matter” source (⊃scalars, vectors and tensors).

Terminology :

Standard dark energy: standard gravity, canonical kineticenergy, minimal couplings, sound speed = c.

Clustering dark energy: k-essence

Explicit modified gravity models: F (R), Scalar-tensor theories(F (φ)R), Gauss-Bonnet...

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Coupled dark energy models

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Coupled dark energy models

S =

d4x√

g

[

R

16πG− 1

2gµνgµν∂µφ∂νφ− V (φ) + m(φ)ψψ + Lm(ψ)

]

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Coupled dark energy models

S =

d4x√

g

[

R

16πG− 1

2gµνgµν∂µφ∂νφ− V (φ) + m(φ)ψψ + Lm(ψ)

]

coupling can be with baryons, neutrinos, dark matter...

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Coupled dark energy models

S =

d4x√

g

[

R

16πG− 1

2gµνgµν∂µφ∂νφ− V (φ) + m(φ)ψψ + Lm(ψ)

]

coupling can be with baryons, neutrinos, dark matter...writing m(φ) = m exp(−β(φ)φ) then :

G = G (1 + 2β2(φ)

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Classifying theories:

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Classifying theories:

Identify a limited number of parameters that can be determinedfrom observations and which are meaningful in the “space oftheories”

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Classifying theories:

Identify a limited number of parameters that can be determinedfrom observations and which are meaningful in the “space oftheories”

Parametrized Post Friedmann (PPF) formalism

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Classifying theories:

Identify a limited number of parameters that can be determinedfrom observations and which are meaningful in the “space oftheories”

Parametrized Post Friedmann (PPF) formalism

Effective Field Theories (EFT)

Alain Blanchard Investigating dark gravity with EUCLID

Models of dark energy and modified gravity

Classifying theories:

Identify a limited number of parameters that can be determinedfrom observations and which are meaningful in the “space oftheories”

Parametrized Post Friedmann (PPF) formalism

Effective Field Theories (EFT)

...

Alain Blanchard Investigating dark gravity with EUCLID

One more comment...Friedmann-Lemaître equation:

(

R

R

)2

=8πGρm

3+

8πGρDE

3− kc2

R2

Alain Blanchard Investigating dark gravity with EUCLID

One more comment...Friedmann-Lemaître equation:

(

R

R

)2

=8πGρm

3+

8πGρDE

3− kc2

R2

The split between ρm and ρDE is not (gravitationally) testable(Kunz 2009)

Alain Blanchard Investigating dark gravity with EUCLID

One more comment...Friedmann-Lemaître equation:

(

R

R

)2

=8πGρm

3+

8πGρDE

3− kc2

R2

The split between ρm and ρDE is not (gravitationally) testable(Kunz 2009)Just use it as a parametrization.

Alain Blanchard Investigating dark gravity with EUCLID

Precision cosmology area: curvature

Alain Blanchard Investigating dark gravity with EUCLID

A Cosmological Test of GR at the background levelDynamic

One can derive dynamical equation for a(t) from Newtonianconsideration

Alain Blanchard Investigating dark gravity with EUCLID

A Cosmological Test of GR at the background levelDynamic

One can derive dynamical equation for a(t) from Newtonianconsideration

Newtonian dynamic:

a2 + K =8πG

3

ρa2.

(see Mukhanov’s book)

Alain Blanchard Investigating dark gravity with EUCLID

A Cosmological Test of GR at the background levelDynamic

One can derive dynamical equation for a(t) from Newtonianconsideration

Newtonian dynamic:

a2 + K =8πG

3

ρa2.

(see Mukhanov’s book)

General Relativity

K = c2

soΩk = 1.−

Ωcontents

Alain Blanchard Investigating dark gravity with EUCLID

Testing GR at cosmological scales

Alain Blanchard Investigating dark gravity with EUCLID

Testing GR at cosmological scales

so testing:

Ωk = 1.−∑

Ωcontents

is testing GR on large scale at the background level

Alain Blanchard Investigating dark gravity with EUCLID

Testing GR at cosmological scales

so testing:

Ωk = 1.−∑

Ωcontents

is testing GR on large scale at the background level

So we can define :

Ωkgeo = − k

(a0H0)2

andΩkdyn = 1.−

Ωcontents

Alain Blanchard Investigating dark gravity with EUCLID

Testing GR at cosmological scales

so testing:

Ωk = 1.−∑

Ωcontents

is testing GR on large scale at the background level

So we can define :

Ωkgeo = − k

(a0H0)2

andΩkdyn = 1.−

Ωcontents

and use SNIa, CMB, BAO to constrain these quantities.Yves Zolnierowski & AB, arXiv:1503.00111

Alain Blanchard Investigating dark gravity with EUCLID

With w = −1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

Ωkgeo

Ωk d

yn

Alain Blanchard Investigating dark gravity with EUCLID

With w free

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04Ωkgeo

Ωk d

yn

Alain Blanchard Investigating dark gravity with EUCLID

With w free

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-2.5 -2 -1.5 -1 -0.5 0 0.5

Ωk d

yn

w

Alain Blanchard Investigating dark gravity with EUCLID

Conclusion

Euclid will allow to test gravity at

cosmological scale in many ways

Alain Blanchard Investigating dark gravity with EUCLID

Conclusion

Euclid will allow to test gravity at

cosmological scale in many ways

This can/should be complemented by

other data from cosmological relevance

(CMB, H0, z , t(z), ...)

Alain Blanchard Investigating dark gravity with EUCLID

Conclusion

Euclid will allow to test gravity at

cosmological scale in many ways

This can/should be complemented by

other data from cosmological relevance

(CMB, H0, z , t(z), ...)

First results at Moriond 2021 (TBC)

Alain Blanchard Investigating dark gravity with EUCLID

Conclusion

Euclid will allow to test gravity at

cosmological scale in many ways

This can/should be complemented by

other data from cosmological relevance

(CMB, H0, z , t(z), ...)

First results at Moriond 2021 (TBC)

Thank You

Alain Blanchard Investigating dark gravity with EUCLID