Biomembranen — Wirkung von Seifen, Detergenzien und...

Post on 06-Feb-2018

215 views 0 download

Transcript of Biomembranen — Wirkung von Seifen, Detergenzien und...

Biomembranen — Wirkung von Seifen, Detergenzien und Saponine

Seifen und Detergenzien = „oberflächenaktive“ Stoffe: setzen die Oberflächenspannung zwischen wässriger und Lipidphase von Membranen, z.B. der Erythrozyten, herab. Membranlipide werden emulgiert und aus der Membran gelöst => Platzen der Biomembran, die Zelle stirbt ab (Hämolyse)

Saponine — Hämolytische AktivitätSaponin Vorkommen Hämolyt. IndexGypsosid Gypsophila-Arten 29.300α-Hederin Hedera helix (Blätter) 150.000Primulasaponin (Gemisch)

Primula elatior (Wurzel, Rhizom) 50.000

Aescin (Gemisch) Aesculus hippocastanum (Samen) 98.000Glycyrrhizinsäure Glycyrrhiza-Arten (Wurzel) < 2.000Cyclamin Cyclamen europaeum (Knollen) 390.000Sarsaparillosid Smilax-Arten (Wurzel) < 2.000Digitonin Digitalis purpurea (Samen) 88.000Tomatin Lycopersicon esculentum (Blätter) 170.000

H.I. = 30.000 x (Menge Standardsaponin/Menge Probe für vollständige Hämolyse)frisches, defibriniertes Rinderblut, 1:200 verdünnt

Saponine — Wirkungen• expektorierend-sekretolytisch• antiödematös-exsudativ• entzündungshemmend-antiulzerogen• antiviral, antibakteriell, antifungal• allgemeines Tonikum• als Adjuvans in Impfstoffen: QS-21 aus der Rinde von Quillaja saponaria (Rosaceae), z.B. in möglichem Malaria- oder HIV-Impfstoff

Saponine — Wirkungen• expektorierend-sekretolytisch• antiödematös-exsudativ• entzündungshemmend-antiulzerogen• antiviral, antibakteriell, antifungal• allgemeines Tonikum• als Adjuvans in Impfstoffen: QS-21 aus der Rinde von Quillaja saponaria (Rosaceae), z.B. in möglichem Malaria- oder HIV-Impfstoff

Biomembranen — Physikalische Eigenschaften: Semipermeabilität,

Membranpotential

Membranpassage:• freie Diffusion von Stoffen, folgt Konzentrationsgefälle, OHNE Trägerprotein

Biomembranen — Transportmechanismen

Diffusion:gleichmäßige Verteilunggelöster Stoffe im Lösungs-mittel

• gelöster Stoff wandert in Richtung der geringeren Konzentration (Konzentrationsgradient)

• Lösungsmittel wandert in Richtung höherer Stoffkonzentration

Biomembranen — Transportmechanismen

Diffusion + Biomembran:gleichmäßige Verteilunggelöster Stoffe im Lösungs-mittel

• kann der gelöste Stoff durch die Biomembran?

• kann das Lösungsmittel durch die Biomembran?

Biomembranen — Physikalische Eigenschaften: Semipermeabilität,

Membranpotential

Barrierewirkung der Membran:• freie Diffusion von Stoffen wird unterbunden durch Lipidbilayer• selektiver Stofftransport über spezielle Membranproteine = Translokatoren ⇒ Semipermeabilität oder selektive Permeabilität

Permeabilität von Molekülen durch eine künstliche Lipiddoppelschicht

Biomembranen — Physikalische Eigenschaften: Semipermeabilität,

Membranpotential

Membranpassage:• freie Diffusion von Stoffen, folgt Konzentrationsgefälle, OHNE Trägerprotein

• erleichterter Transport, folgt Konzentrationsgefälle, braucht Protein als Transporteur, OHNE Energie

• aktiver Transport, geht GEGEN Konzentrationsgefälle, braucht Protein UND Energie

Biomembranen — Transport-

mechanismen

Osmoseeinfache Diffusiondurch Membranen

Osmose:Nettobewegung eines gelösten Stoffes durch eine selektiv permeable Membran im lebenden System: Wasser wandert vom Ort der niedrigeren Stoffkonzentration zum Ort der höheren Stoffkonzentrationhydrostatischer vs. osmotischer Druck führen zum „Gleichgewicht“

Biomembranen — Transportmechanismen

hypoton – isoton – hyperton:normalerweise: Cytosol einer Zelle isoton mit umgebendem Gewebe, z.B. 0,9 % NaCl bei Erythrozytenbei zellulärem Hirnödem: Verabreichung einer hypertonen Lösungbei dehydrierten Personen: Verabreichung einer hypotonen Lösung

Biomembranen — Transportmechanismen

Biomembranen — Transportmechanismen: Einfache Diffusion bei der Plasmolyse und

Deplasmolyse

Biomembranen — Transportmechanismen

Barrierewirkung der Membran:• freie Diffusion von Stoffen wird unterbunden durch Lipidbilayer• selektiver Stofftransport über spezielle Membranproteine = Translokatoren ⇒ Semipermeabilität oder selektive Permeabilität

Permeabilität von Molekülen durch eine künstliche Lipiddoppelschicht

Membranpassage:• freie Diffusion von Stoffen, folgt Konzentrationsgefälle, OHNE Trägerprotein

• erleichterter Transport, folgt Konzentrationsgefälle, braucht Protein als Transporteur, OHNE Energie

• aktiver Transport, geht GEGEN Konzentrationsgefälle, braucht Protein UND Energie

Biomembranen — Transportmechanismen

Biomembranen — Transport-

mechanismen

spezifischer Transport:• schneller als freie Diffusion• substratspezifisch• ist spezifisch hemmbar2 Formen:• passiver Transport (katalysierte

Diffusion), geht bis zur Sättigung• aktiver Transport (nur in eine Richtung,

braucht Energie), auch gegen Konzentrationsgefälle

über Kanal- oder Carrierprotein:• Kanalprotein = wassergefüllte Membranpore, durchgängiger Kanal• Carrierprotein kann 2 versch. Konformationen annehmen, KEIN kontinuierlicher Kanal

Uniport:Transport nur in eine Richtung

Cotransport:Transport nutzt elektrochemisches Potential; Unterscheidung zwischen Symport und Antiport

Biomembranen — Transport-

mechanismen

Beispiele:

Erleichterter Transport: • Bindung von Acetylcholin öffnet Na+-Ionenkanal –> Nervenimpuls• Glucosetransporter in Erythrozytenplasmamembran

Aktiver Transport:— Direkter aktiver Transport (ATP wird vom Transporter hydrolysiert)! • Na+/K+-ATPase, zur Aufrechterhaltung des Konzentrationsgradienten! (3 Na+ raus, 2 K+ rein)! • H+/K+-ATPase, zur Generierung der Magensäure! • Ca2+-ATPase, in Skelettmuskelzellen zur Speicherung von Calcium im! sarkoplasmatischen Reticulum! • ABC-Transporter, transportieren z.B. aktiv Chemotherapeutika aus der! Zielzelle heraus— Indirekter aktiver Transport (ATP wurde vorher verbraucht, z.B. für Konzentrationsgradient)! • Symport: Na+/Glucose-Transporter —> Glucose und Na+ werden ! gleichzeitig in die gleiche Richtung transportiert! • Antiport: Ca2+ wird gegen Na+ transportiert

Biomembranen — Physikalische Eigenschaften: Semipermeabilität,

Membranpotential

Barrierewirkung der Membran:• freie Diffusion von Stoffen wird unterbunden durch Lipidbilayer• selektiver Stofftransport über spezielle Membranproteine = Translokatoren ⇒ Semipermeabilität oder selektive Permeabilität⇒ Ungleichverteilung der Ionen Na+, K+, Ca2+ und Cl–⇒ Differenz im elektrischen Potential zwischen Innen- und Außenseite (ca. 70 mV, innen negativer als außen)

Biomembranen — Chemie und Aufbau der Membranproteine

Energieverbrauchende Transportsysteme, ATPasen, Permeasen

Unterscheidung zwischen peripheren und integralen Proteinen:• integral: auch amphipathisch mit hydrophilem und hydrophobem Anteil => entweder über α-Helices oder β-Faltblätter durch Lipid-Teil• peripher: über Lipidanker in Membran fixiert

wichtige Vermittler zwischen innen und außen

Biomembranen — Chemie und Aufbau der Membranproteine

Biomembranen — Chemie und Aufbau der Membranproteine

Porine in äußerer Membran gramnegativer Bakterien:β-Faltblätter fassen hydrophilen Kanal ein

α-Helices mit lipophilen Aminosäureresten zur Lipidschicht gewandt, hydrophiles Säureamid-Rückgrat nach innen

Biomembranen — Membranproteine

periphere Proteine:• über Lipidanker wie Myristat-, Farnesyl- oder Geranylphosphatidyl-Rest in Membran fixiert

Biomembranen — Unterschiedliche Zusammensetzungen

Membrantyp Massenanteil [%]Massenanteil [%]Massenanteil [%]MembrantypProtein Lipid Kohlenhydrat

Myelin 18 79 3Plasmamembran:menschl. Erythrozyten 49 43 8Leberzelle der Maus 44 52 4Amöbe 54 42 4

Chloroplastenlamelle 70 30 0Halobakterium 75 25 0innere Mitochondr.membran

76 24 0

Biomembranen — Physikalische

Eigenschaften: Membranpotential

Signalfunktion (elektr. Erregungsweiterleitung):• durch Reiz ändert sich die Durchlässigkeit best. Ionenkanäle• das Membranpotential ändert sich = Depolarisation • zur Regeneration muss Strom in andere Richtung fließen = Repolarisation• Änderung des Membranpot. wird als Information weiter gegeben

Ruhepotential

Aktionspotential

Außen: wesentlich mehr Na+

Innen: wesentlich mehr K+

Biomembranen — Physikalische Eigenschaften: Membranpotential

saltatorische Erregungsweiterleitung:• an markhaltigen Nervenfasern findet Depolarisation nur an den Ranvier-schen Schnürringen statt=> höhere Leitungsgeschwindigkeit als bei marklosen Nervenfasern

Schwannzelle

Biomembranen — Signaltransduktionswege in Säugerzellen

Unterscheidung in „first“ und „second messenger“:• von außen ankommende Signalmoleküle sind first messenger• können sehr unterschiedlich sein: z.B. Prostaglandine, Histamin, Acetylcholin, u.a. Liganden, Proteine wie Hormone, Wachstumsfaktoren, versch. Ionen

Biomembranen — Signaltransduktionswege in Säugerzellen

Biomembranen — Signaltransduktionswege in Säugerzellen

Unterscheidung in „first“ und „second messenger“:• intrazellulär weiter umsetzende Signalmoleküle sind second messenger• sind wesentlich weniger: Ca2+-Konz., cAMP, Inositoltrisphosphat (IP3), Diacylglycerin (DG), etc.

Biomembranen — Signaltransduktionswege in Säugerzellen

Unterscheidung in „first“ und „second messenger“:• intrazellulär weiter umsetzende Signalmoleküle sind second messenger• sind wesentlich weniger: Ca2+-Konz., cAMP, Inositoltrisphosphat (IP3), Diacylglycerin (DG), etc.

Biomembranen — Signaltransduktionswege in Säugerzellen

Unterscheidung in „first“ und „second messenger“:• intrazellulär weiter umsetzende Signalmoleküle sind second messenger• sind wesentlich weniger: Ca2+-Konz., cAMP, Inositoltrisphosphat (IP3), Diacylglycerin (DG), etc.

Biomembranen — Signaltransduktionswege in Säugerzellen

Biomembranen — Signaltransduktionswege in Säugerzellen

Unterscheidung in „first“ und „second messenger“:• intrazellulär weiter umsetzende Signalmoleküle sind second messenger• sind wesentlich weniger: Ca2+-Konz., cAMP, Inositoltrisphosphat (IP3), Diacylglycerin (DG), etc.

GDP+P

Biomembranen — Signaltransduktionswege in Säugerzellen

Prinzip:• first messenger bringt Signal an Membranprotein => führt zu Effekt in der Membran• second messenger wird intrazellulär angeschaltet und aktiviert eine Signaltransduktionskaskade, in der meist mehrere Proteinkinasen unterschiedliche Substrate phosphorylieren und schließlich den zellulären Effekt hervorrufen

⇒ insgesamt kommt es zu einer Verstärkung des Signals⇒ das Signal muss auch wieder abgeschaltet werden können, ansonsten kommt es z.B. zur „Entartung“ der Zelle und zur Entstehung einer Tumorzelle⇒ Signaltransduktionswege steuern Wachstum, Differenzierung, Teilung und Zelltod